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Abstract

We present an open-source infrastructure for deploying Large Language Model (LLM)
inference within Trusted Execution Environments (TEEs) with cryptographic remote attes-
tation. Our implementation runs self-hosted DeepSeek models on Azure Confidential VMs
with Intel TDX, providing hardware-enforced memory encryption and verifiable privacy
guarantees. We introduce a remote attestation API that enables clients to cryptographi-
cally verify TEE execution before submitting sensitive prompts. Our production deployment
demonstrates practical feasibility with 12 tokens/second on CPU TEE and projects 150+
tokens/second on GPU TEE with NVIDIA H100 Confidential Computing. The complete
infrastructure, including Terraform configurations and attestation services, is available at
https://github.com/VibeTechnologies/TrustedGenAi.

1 Introduction

The widespread adoption of Large Language Models (LLMs) for sensitive applications—including
browser automation, code generation, and document analysis—raises fundamental privacy con-
cerns. Users must trust that their prompts are not logged, their data is not used for training, and
their credentials remain confidential. Current cloud-hosted LLM APIs provide no cryptographic
guarantees about data handling; users rely entirely on provider policies and legal agreements.

Trusted Execution Environments (TEEs) offer a hardware-based solution by providing iso-
lated execution contexts where data remains encrypted even from the cloud operator. However,
deploying production LLM inference within TEEs presents unique challenges: model size con-
straints, performance overhead, and the complexity of remote attestation for end users.

1.1 Contributions

We make the following contributions:

1. Production TEE-LLM Infrastructure: We deploy and validate an end-to-end LLM
inference system on Azure Confidential VMs with Intel TDX, demonstrating practical
feasibility for privacy-critical workloads.

2. Remote Attestation API: We implement a REST API that provides cryptographic
proof of TEE execution, enabling clients to verify hardware isolation before submitting
sensitive data.

3. Open-Source Reference Implementation: We release complete infrastructure code,
including Terraform configurations, attestation services, and client integration examples.
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4. Performance Benchmarks: We provide empirical measurements of inference perfor-
mance on both CPU TEE (Intel TDX) and projections for GPU TEE (NVIDIA H100
Confidential Computing).

2 Background

2.1 Trusted Execution Environments

A Trusted Execution Environment is a secure, isolated processing environment that guarantees
confidentiality and integrity of code and data. The Confidential Computing Consortium defines
TEEs as hardware-based, attested environments that protect data in use [1].

2.1.1 Intel Trust Domain Extensions (TDX)

Intel TDX [2] provides hardware-isolated virtual machines called Trust Domains with the fol-
lowing properties:

• Memory encryption using CPU-managed keys (AES-256-XTS)

• Isolation from hypervisor, other VMs, and host OS

• Hardware-rooted remote attestation

• Minimal performance overhead (typically <5% for compute-bound workloads)

Azure offers Intel TDX via the DCesv5 VM series (e.g., Standard_DC4es_v5).

2.1.2 AMD Secure Encrypted Virtualization (SEV-SNP)

AMD SEV-SNP [3] provides similar guarantees with:

• Per-VM encryption keys managed by AMD Secure Processor

• Secure Nested Paging preventing hypervisor memory remapping attacks

• No guest modifications required (transparent to applications)

Azure offers AMD SEV-SNP via the DCasv5 series and NCCads_H100_v5 for GPU work-
loads.

2.2 Remote Attestation

Remote attestation enables a client to cryptographically verify that code is running within a
genuine TEE. The attestation flow consists of:

1. TEE generates a hardware-signed attestation report containing platform measurements

2. Report is signed by manufacturer (Intel/AMD) or cloud provider (Azure)

3. Client verifies signature chain and platform configuration

4. If valid, client trusts subsequent interactions

Azure Attestation provides PKCS7-signed documents containing VM identity, TPM Plat-
form Configuration Register (PCR) values, and TEE activation proof.
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3 Threat Model

We consider an adversary with the following capabilities:

• Malicious cloud operator: Full control over hypervisor, physical access to hardware,
ability to inspect VM memory in standard deployments

• Compromised service operator: Access to application deployment, configuration, and
logs

• Network adversary: Ability to intercept and modify network traffic (mitigated by TLS)

Out of scope: Side-channel attacks on TEE implementations, supply chain attacks on
hardware, and denial-of-service attacks.

3.1 Security Goals

1. Prompt Confidentiality: User prompts are never accessible to operators or cloud providers

2. Response Integrity: Model outputs cannot be tampered with by external parties

3. Verifiable Execution: Clients can cryptographically verify TEE deployment

4. Operator Blindness: Service operators cannot access user data

4 System Architecture

4.1 Overview

TrustedGenAi deploys an OpenAI-compatible LLM API within an Azure Confidential VM. The
architecture consists of three components:

1. LiteLLM Proxy: OpenAI-compatible API gateway supporting multiple model backends

2. Ollama/vLLM: Local model inference engine running DeepSeek models

3. Attestation API: REST endpoint providing cryptographic TEE verification
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+----------------------------------------------------------+
| Client Application |
+---------------------------+------------------------------+

|
v HTTPS (TLS 1.3)

+----------------------------------------------------------+
| Cloudflare Edge (TLS Termination) |
+---------------------------+------------------------------+

|
v Cloudflare Tunnel

+----------------------------------------------------------+
| Azure Confidential VM (Intel TDX / AMD SEV-SNP) |
| |
| +---------------------+ +---------------------------+ |
| | LiteLLM (port 4000) | | Attestation API (port 4001)| |
| | - OpenAI API | | - Azure PKCS7 proof | |
| | - API key auth | | - TPM PCR values | |
| +---------+-----------+ | - TEE dmesg proof | |
| | +---------------------------+ |
| v |
| +---------------------+ |
| | Ollama (port 11434) | |
| | - DeepSeek-R1 | |
| +---------------------+ |
| |
| [Hardware: Memory Encryption via Intel TDX] |
+----------------------------------------------------------+

Figure 1: TrustedGenAi System Architecture

4.2 Attestation API Design

The attestation endpoint returns a JSON document containing multiple verification layers:

Listing 1: Attestation API Response
1 {
2 "platform ": "Intel -TDX",
3 "vm_size ": "Standard_DC4es_v5",
4 "tee_verified ": true ,
5 "azure_attestation ": {
6 "encoding ": "pkcs7",
7 "signature ": "<base64 Microsoft -signed document >"
8 },
9 "tpm_pcr_sha256 ": {

10 "0": "0 x2ADE8023 ...",
11 "7": "0 xF8C9E2A1 ..."
12 },
13 "tee_dmesg ": [
14 "Memory Encryption Features active: Intel TDX"
15 ]
16 }

Verification Layers:
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1. platform: TEE technology (Intel-TDX or AMD-SEV-SNP)

2. azure_attestation: PKCS7 document signed by Microsoft Azure, containing VM iden-
tity and timestamp

3. tpm_pcr_sha256: TPM Platform Configuration Registers for software integrity verification

4. tee_dmesg: Linux kernel messages proving TEE activation

4.3 Client Verification Flow

Clients should verify attestation before submitting sensitive prompts:

Listing 2: Client Verification Example
1 async function verifyAndChat(prompt) {
2 const TEE_API = ’https ://tee.vibebrowser.app ’;
3

4 // Step 1: Fetch and verify attestation
5 const attestation = await fetch(‘${TEE_API }/ attestation ‘)
6 .then(r => r.json());
7

8 if (! attestation.tee_verified) {
9 throw new Error(’TEE verification failed ’);

10 }
11

12 if (! attestation.tee_dmesg.some(
13 l => l.includes(’Intel TDX ’) || l.includes(’SEV -SNP ’))) {
14 throw new Error(’TEE not active ’);
15 }
16

17 // Step 2: Submit prompt to verified TEE
18 return fetch(‘${TEE_API }/v1/chat/completions ‘, {
19 method: ’POST ’,
20 headers: {
21 ’Content -Type ’: ’application/json ’,
22 ’Authorization ’: ’Bearer <api -key >’
23 },
24 body: JSON.stringify ({
25 model: ’deepseek -r1 ’,
26 messages: [{ role: ’user ’, content: prompt }]
27 })
28 }).then(r => r.json());
29 }

5 Implementation

5.1 Infrastructure as Code

We provide Terraform configurations for reproducible deployment:

Listing 3: Deployment Commands
1 # Clone repository
2 git clone https :// github.com/VibeTechnologies/TrustedGenAi
3 cd TrustedGenAi/terraform
4

5 # Deploy CPU TEE (Intel TDX)
6 terraform init
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7 terraform apply -var="enable_cpu_tee=true"
8

9 # Deploy GPU TEE (NVIDIA H100 CC)
10 terraform apply -var="enable_gpu_tee=true"

5.2 CPU TEE Deployment

Our production CPU TEE deployment uses:

Table 1: CPU TEE Configuration
Parameter Value

VM Size Standard_DC4es_v5
vCPUs 4
Memory 16 GB
TEE Type Intel TDX
OS Ubuntu 22.04 LTS (Confidential)
Model DeepSeek-R1 1.5B
Cost $216/month

5.3 GPU TEE with NVIDIA Confidential Computing

For production workloads requiring high throughput, GPU-accelerated TEE provides the opti-
mal solution. NVIDIA H100 Tensor Core GPUs support Confidential Computing mode, extend-
ing the TEE boundary from CPU to GPU with hardware-based memory encryption [4].

5.3.1 NVIDIA H100 Confidential Computing Architecture

The NVIDIA H100 GPU implements Confidential Computing through:

• GPU Memory Encryption: HBM3 memory is encrypted with keys managed by the
GPU’s security processor

• Secure Channel: Encrypted PCIe communication between CPU TEE and GPU TEE

• GPU Attestation: Hardware-rooted attestation reports verifying GPU confidential mode

• Isolation: GPU memory isolated from host OS, hypervisor, and other VMs

5.3.2 Cloud Provider Availability

Table 2: GPU TEE Availability by Cloud Provider
Provider VM Series GPU TEE Type

Azure NCCads_H100_v5 1-4x H100 NVL AMD SEV-SNP + NVIDIA CC
Google Cloud A3 Confidential 8x H100 Intel TDX + NVIDIA CC

5.3.3 DeepSeek Deployment on GPU TEE

DeepSeek models can be efficiently deployed on GPU TEE:
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Table 3: DeepSeek Model Fit on NVIDIA H100 (94GB HBM3)
Model Precision VRAM Fits on 1x H100

DeepSeek-R1-Distill-1.5B FP16 3 GB Yes
DeepSeek-R1-Distill-7B FP16 14 GB Yes
DeepSeek-R1-Distill-14B FP16 28 GB Yes
DeepSeek-R1-Distill-32B FP16 64 GB Yes
DeepSeek-R1-Distill-70B FP8 70 GB Yes
DeepSeek-V3 (671B MoE) FP8 80-90 GB Yes (37B active)

Note: GPU TEE has not been deployed in our production environment; the following
specifications are projections based on hardware capabilities and vendor documentation.

Table 4: GPU TEE Configuration (Projected)
Parameter Value

VM Size Standard_NCC40ads_H100_v5
vCPUs 40 (AMD EPYC Genoa)
Memory 320 GB
GPU 1x NVIDIA H100 NVL (94 GB HBM3)
TEE Type AMD SEV-SNP + NVIDIA CC
Model DeepSeek-R1-Distill-70B (FP8)
Projected Throughput 150-300 tokens/sec
Cost $6,300/month

5.4 TPU TEE: Current Limitations

Google Cloud TPUs (Tensor Processing Units) currently do not support Confidential Com-
puting. Unlike NVIDIA GPUs with hardware-level encryption, TPUs lack:

• Hardware memory encryption for TPU HBM

• Secure channel establishment with CPU TEE

• Hardware-rooted attestation for TPU workloads

Implication: For privacy-critical LLM inference requiring hardware attestation, NVIDIA
H100 Confidential Computing is the only available GPU TEE option. TPU workloads cannot
currently provide cryptographic privacy guarantees equivalent to CPU/GPU TEE deployments.

Future Outlook: As confidential computing adoption grows, TPU TEE support may
emerge. Organizations requiring TPU performance for large-scale LLM inference must currently
choose between:

1. Performance (TPU without TEE) with policy-based privacy guarantees

2. Privacy (GPU TEE with H100) with hardware-verified guarantees

6 Evaluation

6.1 Performance Benchmarks

We measured inference performance across deployment configurations:
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Table 5: Inference Performance by Configuration
Config Model Tokens/s Latency Cost/1M tokens

CPU TEE deepseek-r1:1.5b 12 83ms/tok $5.00
CPU TEE deepseek-r1:7b 0.7 1.4s/tok $85.00
GPU TEE (proj.) DeepSeek-R1-7B 150 7ms/tok $0.40

6.2 Attestation Latency

Attestation API response time: 150-300ms (includes Azure metadata service call).

6.3 End-to-End Verification

We validated the deployment with integration tests:

• Backend Tests: 4/4 passing (attestation, models, chat, health)

• Extension Integration: 5/5 passing (provider config, HTTPS, wrapper, connectivity,
build)

• TEE Verification: Intel TDX confirmed via dmesg and Azure attestation

7 Security Analysis

7.1 Trust Comparison

Table 6: Trust Requirements by Deployment Model
Trust Assumption Cloud API Self-Hosted TEE

Trust cloud infrastructure Yes Yes Hardware-verified
Trust service operator Yes Yes No
Trust model provider Yes No No
Cryptographic verification No No Yes

7.2 Limitations

1. TLS Termination: Cloudflare terminates TLS before the TEE. For maximum security,
clients should establish TLS directly to the TEE.

2. Side Channels: TEE implementations may be vulnerable to side-channel attacks [17].
Our threat model excludes these.

3. Model Size Constraints: CPU TEE limits practical model size to approximately 7B
parameters due to memory and performance constraints.

4. Region Availability: GPU TEE (NCCads_H100_v5) is limited to East US 2 and West
Europe regions.
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8 Related Work

Confidential Computing for ML: Prior work has explored TEE-based machine learning
[19, 20], primarily focusing on training privacy. Our work addresses inference privacy with
remote attestation for end users.

Private LLM Inference: Approaches include differential privacy [22], secure multi-party
computation [23], and homomorphic encryption [24]. TEEs offer lower latency at the cost of
trusting hardware manufacturers.

Decentralized AI: Projects like Marlin Oyster provide on-chain attestation for TEE work-
loads. Our work focuses on centralized deployment with client-verifiable attestation.

9 Conclusion

We presented TrustedGenAi, a production-ready infrastructure for privacy-preserving LLM in-
ference using Trusted Execution Environments. Our implementation demonstrates that TEE-
based LLM deployment is practical today, with acceptable performance for many use cases and
a clear path to GPU acceleration.

The key insight is that remote attestation transforms the trust model: instead of trusting ser-
vice operators, users verify hardware-signed cryptographic proofs. This enables privacy-critical
applications that were previously infeasible with cloud-hosted LLMs.

Open Source: Complete infrastructure code is available at:
https://github.com/VibeTechnologies/TrustedGenAi

9.1 Future Work

1. Direct TLS to TEE: Eliminate Cloudflare from the trust path

2. On-Chain Attestation: Publish attestation proofs to blockchain for auditability

3. Multi-Party TEE: Distribute inference across multiple TEE nodes

4. Larger Models: Deploy DeepSeek-V3 on multi-GPU TEE clusters
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